作 者:王楠 徐金安 明芳 陈钰枫 张玉洁 WANG Nan, XU Jin' an, MING Fang, CHEN Yufeng , ZHANG Yujie (School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China) 机构地区:北京交通学院计算与信息技术大学,北京100044 出 处:《中文信息学报》2017年第6期201-207,共7页Journal of Chinese Information Processing 基 金:国家自然科学基金(61370130;61473294); 中央高校基本科研业务费专项资金资助(2017JBM033); 国家国际科技合作专项资助(2017DFA11350) 摘 要:日语中谓词语态有不同的词尾变形,其中被动态和可能态具有相同的词尾变化,在统计机器翻译中难以对其正确区分及翻译。因此,该文提出一种利用最大熵模型有效地对日语可能态和被动态进行分类,然后把日语的可能态和被动态特征有效地融合到对数线性模型中改进翻译模型的措施,以提高可能态和被动态翻译规则选择的准确性。实验结果表明,该措施可以有效提升日语可能态和被动态句子的翻译质量,在大规模日汉语料上,最高翻译BLEU值能够由41.50提高到42.01,并在人工评测中,翻译结果的整体可理解度得到了2.71%的提升。The suffixes of Japanese predicates have complex formation of different voice.Both passive and potential predicates are formed with the same suffix which originated from the same stem,which cause mistranslation in statistical machine translation.In this paper,a new method has been proposed for rule selection among different voice.Maximum entropy models are built to effectively classify passive and potential voice,and then voice features are integrated into the log-linear model translation model.In Japanese to Chinese translation task,large scale experiment shows that our approach improves the translation performance from 41.50 to 42.01 in BLEU score,and the informativness is 2.71% higher according to the human evaluation results. 分 类 号:TP391[自动化与计算机技术—计算机运用技术;自动化与计算机技术—计算机科学与技术] ,日语毕业论文,日语论文 |