[摘要] 通过硅胶,Sephadex LH-20葡聚糖凝胶,ODS反相柱色谱等分离技术对鸢尾科Iridaceae植物德国鸢尾Iris germanica根茎的化学成分进行分离纯化,采用理化性质及波谱略论措施对分离得到的化合物进行结构鉴定。从该植物根茎中分离得到21个化合物,分别鉴定为商陆素(1),5,3,3′-三羟基-7,4′-二甲氧基黄烷酮(2),5,7,4′-三羟基双氢黄酮(3),cirsiliol-4′-glucoside(4),3β,4′-dihydroxy-7,3′-dimethoxy flavornone-5-O-β-D-glucopyranoside(5),染料木素(6),irilin D(7),muningin(8),5,7, 4′-三羟基-6,3′,5′-三甲氧基异黄酮(9),鸢尾苷元(10),野鸢尾苷元(11),鸢尾苷(12),野鸢尾苷(13),芒果苷(14),irisxanthone(15),焦谷氨酸(16),2,4′, 6-trihydroxy-4-methoxybenzophenone-2-O-β-D-glucoside (17),茶叶花宁(18),草夹竹桃苷(19),β-谷甾醇(20),胡萝卜苷(21)。其中化合物1~9,16,17为首次从德国鸢尾中分离得到,化合物8,9为首次从鸢尾属植物中分离得到,化合物1,4,17为首次从鸢尾科植物中获得。 外语论文网 www.waiyulw.com [关键词] 鸢尾属,德国鸢尾,化学成分 [收稿日期] 2017-12-01 [基金项目] 国家自然科学基金项目(81373918);国家“重大新药创制”科技重大专项(2017ZX09304006);江苏省普通高校探讨生科研创新计划项目(CXZZ12-0318) [通信作者] *秦民坚,Tel:(025)86185130, E-mail:minjianqin@163.com 德国鸢尾Iris germanica L.为鸢尾科Iridaceae鸢尾属Iris L.多年生草本植物,原产欧洲中部和南部,现在我国广泛栽培,传统用作利尿剂、兴奋剂及轻泻剂等[1]。目前从该植物中已分离得到多种化合物,主要包括黄酮类化合物及其糖苷、异黄酮类化合物及其糖苷、三萜类化合物等,其中异黄酮和三萜类化合物为主要成分。现代药理探讨表明,异黄酮及三萜类化合物具有良好的抗肿瘤、抗氧化及降血脂等影响[2-5]。目前国内对德国鸢尾的化学成分探讨报道较少,为了进一步合理利用该药用资源,本实验对其根茎的化学成分进行了探讨,从德国鸢尾根茎乙醇提取物中分离并鉴定了21个化合物,其中化合物1~9,16,17为首次从德国鸢尾中分离得到,化合物8,9为首次从该属植物中分离得到,化合物1,4,17为首次从鸢尾科植物中获得。 1 材料 Bruker ACF-500核磁共振仪(德国Bruker企业)及Agilent 1100 MSD Trap电喷雾质谱仪(美国Agilent企业)。X-4型显微熔点测定仪(上海精密仪器有限企业,温度未校正),Sephadex LH-20(50 μm,瑞典Amersham biosciences企业),实验用薄层和柱色谱硅胶均为青岛海洋化工厂产品,所用试剂均为略论纯。 德国鸢尾根茎购买于浙江省东阳市千祥镇,由中国药科大学秦民坚教授鉴定为鸢尾科鸢尾属德国鸢尾I. germanica,凭证标本存放于中国药科大学中药资源学教研室,标本No. Xie 2017-001。 2 提取分离 德国鸢尾根茎14 kg,粉碎,95%乙醇加热回流提取,提取3次,每次2 h,合并提取液,减压浓缩成浸膏(800 g),经硅胶100~200目柱色谱分离,以氯仿-甲醇系统(100∶0~0∶100)梯度洗脱,得到18个流分(F1:12.1 g;F2:21.2 g;F3:26.5 g;F4:24.5 g;F5:36.7 g;F6:25.1 g;F7:35.8 g;F8:43.4 g;F9:58.7 g;F10:23.3 g;F11:45.6 g;F12:68.9 g;F13:42.1 g;F14:73.3 g;F15:51.8 g;F16:49.9 g;F17:42.8 g;F18:39.6 g)。F5经硅胶(石油醚-乙酸乙酯50∶1~1∶1)柱色谱分离得15个流分(F5-1~F5-15),F5-6(2.8 g)经硅胶(石油醚-乙酸乙酯50∶1~20∶1)和Sephadex LH-20(氯仿-甲醇1∶1)柱分离纯化得化合物1(20 mg),18(30 mg),F5-12(3.9 g)经硅胶(石油醚-乙酸乙酯30∶1~1∶1)和Sephadex LH-20(氯仿-甲醇1∶1)柱分离纯化得化合物2(12 mg),20(40 mg);F9经硅胶(石油醚-乙酸乙酯20∶1~1∶1)柱色谱分离得10个流分(F9-1~F9-10),F9-4(0.9 g)经Sephadex LH-20(氯仿-甲醇1∶1)柱分离纯化得化合物9(22 mg),F9-5(3.2 g)经硅胶(石油醚-乙酸乙酯20∶1~1∶1)和Sephadex LH-20(氯仿-甲醇1∶1)柱分离纯化得化合物3(18 mg),6(12 mg),10(13 mg),F9-6(5.2 g)经硅胶(石油醚-乙酸乙酯15∶1~1∶1)和Sephadex LH-20(氯仿-甲醇1∶1)柱分离纯化得化合物7(25 mg),8(10 mg),11(200 mg);F12中析出化合物21(2.1 g);F14经硅胶(氯仿-甲醇50∶1~1∶1)柱色谱分离得11个流分(F14-1~F14-11),F14-5(2.5 g)经硅胶(氯仿-甲醇50∶1~10∶1)和Sephadex LH-20(氯仿-甲醇1∶1)柱分离纯化得化合物16(35 mg),F14-10(8.5 g)经硅胶(氯仿-甲醇30∶1~1∶1),Sephadex LH-20(氯仿-甲醇1∶1)和反相柱分离纯化得化合物5(12 mg),12(20 mg),13(300 mg),17(15 mg),19(16 mg);F16经硅胶(氯仿-甲醇30∶1~1∶1)柱色谱分离得11个流分(F16-1~F16-11),F16-7(4.8 g)经硅胶(氯仿-甲醇20∶1~1∶1)和Sephadex LH-20(甲醇)和反相柱分离纯化得化合物4(17 mg),14(50 mg),15(28 mg)。 3 结构鉴定 化合物1 黄色粉末;ESI-MS m/z 329[M-H]-;1H-NMR(CD3COCD3,500 MHz)δ:12.14(1H,s,-OH),7.92(1H,d,J=2.0 Hz,H-2′),7.86(1H,dd,J=8.0,2.0 Hz,H-6′),7.02(1H,d,J=8.0 Hz,H-5′),6.72(1H,d,J=2.0 Hz,H-8),6.33(1H,d,J=2.0 Hz,H-6),3.94(3H,s,-OCH3),3.93(3H,s,-OCH3)。上述数据与文献[6]一致,鉴定为商陆素。 化合物2 浅黄色针晶(氯仿);ESI-MS m/z 331 [M-H]-;1H-NMR(CDCl3,500 MHz)δ:11.20(1H ,s,-OH),7.07(1H,d,J=2.0 Hz,H-2′),7.06(1H,dd,J=8.0,2.0 Hz,H-6′),6.99(1H,d,J=8.0 Hz,H-5′),6.13(1H,d,J=2.0 Hz,H-6),6.07(1H,d,J=2.0 Hz,H-8),5.02(1H,d,J=12.0 Hz,H-3),4.57(1H,d,J=12.0 Hz,H-2),3.95(3H,s,-OCH3),3.83(3H,s,-OCH3)。上述数据与文献[7]一致,鉴定为5,3,3′-三羟基-7,4′-二甲氧基黄烷酮。 化合物3 黄色粉末;HR-ESI-MS m/z 271.061 4[M-H]-(计算值271.061 2);1H-NMR(CD3COCD3,500 MHz)δ:12.17(1H,s,-OH),9.58(1H,br s,-OH),8.50(1H,br s,-OH),7.39(2H,d,J=8.5 Hz, H-2′,6′),6.90(2H,d,J=8.5 Hz,H-3′,5′),5.96(2H,d,J=3.5 Hz,H-6,8),5.45(1H,dd,J=12.8,2.8 Hz,H-2),3.18(1H,dd,J=17.0,13.0 Hz,H-3),2.74(1H,dd,J=17.0,2.8 Hz,H-3)。上述数据与文献[8]一致,鉴定为5,7,4′-三羟基双氢黄酮。 化合物4 黄色粉末;ESI-MS m/z 493 [M/H]/;1H-NMR(DMSO-d6,500 MHz)δ:13.01(1H,s,-OH),7.64(1H,德语论文范文,dd,J=8.5,2.1 Hz,H-6′),7.60(1H,d,J=2.1 Hz,H-2′),7.24(1H,d,J=8.5 Hz,H-5′),6.98(1H,s,H-8),6.65(1H,s,H-3),5.30~4.51(4H,m,2″~4″& 6″-OH),4.71(1H,d,J=7.3 Hz,H-1″),3.90(3H,s,-OCH3),3.76(3H,s,-OCH3),3.82~3.17(6H,m,H-2″~6″)。上述数据与文献[9]一致,鉴定为cirsiliol-4′-glucoside。 化合物5 黄色粉末;ESI-MS m/z 517 [M/Na]/;1H-NMR(DMSO-d6,300 MHz),9.09(1H,s,-OH),7.09(1H,s,H-2′),6.91(1H,d,J=9.1 Hz,H-6′),6.78(1H,d,J=9.1 Hz,H-5′),6.47(1H,s,H-8),6.28(1H,s,H-6),5.41(1H,d,J=4.8 Hz,3-OH),5.11~4.64(4H,m,2″~4″& 6″-OH),5.03(1H,d,J=11.5 Hz,H-2),4.86(1H,d,J=7.3 Hz,H-1″),4.46(1H,dd,J=11.5,4.8 Hz,H-3),3.79(3H,s,-OCH3),3.78(3H,s,-OCH3),3.75~3.16(6H,m,H-2″~6″)。上述数据与文献[10]一致,鉴定为3β,4′-dihydroxy-7,3′-dimethoxyflavonone-5-O-β-D-glucopyranoside。 化合物6 黄色粉末;ESI-MS m/z 269 [M-H]-;1H-NMR(CD3COCD3,300 MHz)δ:13.02(1H,s,-OH),9.65(1H,s,-OH),8.48(1H,s,-OH),8.15(1H,s,H-2),7.45(2H,d,J=8.6 Hz,H-2′,6′),6.90(2H,d,J=8.6 Hz,H-3′,5′),6.41(1 H,d,J=1.6 Hz,H-6),6.28(1H,d,J=1.6 Hz,H-8)。上述数据与文献[11]一致,鉴定为染料木素。 化合物7 无色针晶(丙酮);HR-ESI-MS m/z 315.051 8[M-H]-(计算值315.051 0);1H-NMR(CD3COCD3,500 MHz)δ:13.26(1H,s,-OH),8.16(1H,s,H-2),7.15(1H,s,H-2′),6.94(1H,d,J=7.8 Hz,H-6′),6.88(1H,d,J=7.8 Hz,H-5′),6.50(1H,s,H-8),3.87(3H,s,-OCH3)。上述数据与文献[7]一致,鉴定为irilin D。 化合物8 黄色粉末;ESI-MS m/z 313 [M-H]-;1H-NMR(DMSO-d6,500 MHz)δ:9.46(1H,s,-OH),8.12(1H,s,H-2),7.32(2H,d,J=8.6 Hz,H-2′,6′),6.79(2H,d,J=8.6 Hz,H-3′,5′),6.73(1H,s,H-8),3.80(3H,s,-OCH3),3.77(3H,s,-OCH3);13C-NMR(DMSO-d6,125 MHz)δ:173.8(C-4),157.0(C-4′),156.0(C-2),153.8(C-7),152.5(C-9),139.4(C-6),130.2(C-2′,6′),123.9(C-3),122.6(C-1′),114.8(C-3′,C-5′),111.7(C-10),99.3(C-8),61.5(-OCH3),60.8(-OCH3)。上述数据与文献[12]一致,鉴定为muningin。 化合物9 黄色粉末;ESI-MS m/z 359 [M-H]-;1H-NMR(CD3COCD3,500 MHz)δ:12.69(1H,s,-OH),8.31(1H,s,H-2),6.81(2H,s,H-2′,6′),6.35(1H,s,H-8),3.88(3H,s,-OCH3),3.87(3H,s,-OCH3),3.82(3H,s,-OCH3)。上述数据与文献[13]一致,鉴定为5,7,4′-trihydroxy-6,3′,5′-trimethoxyisoflavone。 化合物10 白色(淡黄色)针晶(甲醇);mp 214~216 ℃;ESI-MS m/z 299 [M-H]-;254 nm下有暗斑,香草醛-浓硫酸显色不明显;经薄层色谱及HPLC检测,其Rf与保留时间tR与鸢尾苷元对照品一致,结合理化性质及光谱数据,鉴定为鸢尾苷元。 化合物11 黄色粉末;ESI-MS m/z 359 [M-H]-;1H-NMR(DMSO-d6,500 MHz)δ:13.03(1H,s,-OH),10.74(1H,s,-OH),9.21(1H,s,-OH),8.38(1H,s,H-2),6.72(1H,d,J=1.8 Hz,H-6′),6.67(1H,d,J=1.8 Hz,H-2′),6.51(1H,s,H-8),3.79(3H,s,-OCH3),3.76(3H,s,-OCH3),3.70(3H,s,-OCH3)。上述数据与文献[14]一致,鉴定为野鸢尾苷元。 化合物12 白色粉末;ESI-MS m/z 461 [M-H]-;1H-NMR(DMSO-d6,500 MHz)δ:12.92(1H,s,-OH),9.61(1H,s,-OH),8.45(1H,s,H-2),7.40(2H,d,J=8.5 Hz,H-2′,6′),6.89(1H,s,H-8),6.83(2H,d,J=8.5 Hz,H-2′,6′),5.44~4.60(4H,m,2″~4″& 6″-OH),5.09(1H,d,J=7.0 Hz,H-1″),3.77(3H,s,-OCH3),3.73~3.16(6H,m,H-2″~6″)。上述数据与文献[15]一致,鉴定为鸢尾苷。 化合物13 白色粉末;ESI-MS m/z 461 [M-H]-;1H-NMR(DMSO-d6,500 MHz)δ:12.90(1H,s,-OH),9.23(1H,s,-OH),8.49(1H,s,H-2),6.90(1H,s,H-8),6.74(1H,d,J=2.0 Hz,H-6′),6.70(1H,d,J=2.0 Hz,H-2′),5.40~4.57(4H,m,2″~4″&6″-OH),5.10(1H,d,J=8.1 Hz,H-1″),3.80(3H,s,-OCH3),3.78(3H,s,-OCH3),3.70(3H,s,-OCH3),3.74~3.16(6H,m,H-2″~6″)。上述数据与文献[16]一致,鉴定为野鸢尾苷。 化合物14 黄色粉末;ESI-MS m/z 421 [M-H]-;1H-NMR(C5D5N,500 MHz),δ:14.57(1H,s,-OH),12.39(2H,br s,-OH),8.09(1H,s,H-8),7.16(1H,s,H-5),6.61(1H,s,H-4),5.85(1H,d,J=9.5 Hz,H-1′),5.50~4.71(4H,m,2″~4″& 6″-OH),4.57~4.18(6H,m,H-2″~6″);13C-NMR(DMSO-d6,125 MHz)δ:180.4(C-9),165.3(C-3),163.3(C-1),157.6(C-4a),156.1(C-6),152.1(C-10a),145.5(C-7),113.2(C-8a),109.3(C-8),108.9(C-2),103.4(C-5),102.9(C-9a),94.3(C-4),83.0(C-5′),80.7(C-3′),75.6(C-1′),72.9(C-4′),72.1(C-2′),62.9(C-6′)。上述数据与文献[17]一致,鉴定为芒果苷。 化合物15 黄色粉末;ESI-MS m/z 435 [M-H]-;1H-NMR(DMSO-d6,500 MHz)δ:13.62(1H,s,-OH),10.65(1H,br s,-OH),10.25(1H,br s,-OH),7.74(1H,d,J=8.5 Hz,H-8),6.97(1H,d,J=8.5 Hz,H-7),6.45(1H,s,H-4),4.61(1H,d,J=9.5 Hz,H-1′),5.10~4.32(4H,m,2″~4″& 6″-OH),3.73~3.12(6H,m,H-2″~6″)。上述数据与文献[18]一致,鉴定为irisxanthone。 化合物16 无色针晶(丙酮);HR-ESI-MS m/z 128.034 8 [M-H]-(计算值128.035 3);1H-NMR(CD3COCD3,500 MHz)δ:4.26(1H,m,H-2),2.48(1H,m,H-3),2.21(3H,m,H-3,4);13C-NMR(CD3COCD3,125 MHz)δ:178.2(C-5),175.0(-COOH),56.1(C-2),30.2(C-4),26.2(C-3)。上述数据与文献[19]一致,鉴定为焦谷氨酸。 化合物17 无色针晶(甲醇);ESI-MS m/z 423[M/H]/;1H-NMR(CD3OD,500 MHz)δ:7.68(2H,d,J=8.7 Hz,H-2′,6′),6.79(2H,d,J=8.5 Hz,H-3′,5′),6.40(1H,d,J=1.9 Hz,H-3),6.18(1H,d,J=1.9 Hz,H-5),4.86(1H,d,J=7.7 Hz,H-1″),3.89~3.10(6H,m,H-2″~6″),3.80(3H,s,-OCH3);13C-NMR(CD3OD,125 MHz)δ:197.1(CO),164.3(C-4),163.8(C-4′),159.1(C-2),158.5(C-6),133.7(C-2′,6′),132.0(C-1′),116.0(C-3′,5′),111.9(C-1),102.5(C-1″),96.8(C-3),95.0(C-5),78.4(C-5″),77.9(C-3″),74.8(C-2″),71.3(C-4″),62.6 (C-6″),56.0(-OCH3)。上述数据与文献[20]一致,鉴定为2,4′,6-trihydroxy-4-methoxybenzophenone-2-O-β-D-glucoside。 化合物18 无色针晶(氯仿);ESI-MS m/z 167 [M/H]/;1H-NMR(CDCl3,500 MHz)δ:7.55(1H,d,J=1.5 Hz,H-2),7.54(1H,dd,J=8.5,1.5 Hz,H-6),6.95(1H,d,J=8.5 Hz,H-5),6.08(1H,s,-OH),3.95(3H,s,-OCH3),2.56(3H,s,-COCH3)。上述数据与文献[16]一致,鉴定为茶叶花宁。 化合物19 白色粉末;ESI-MS m/z 327 [M-H]-;1H-NMR(DMSO-d6,500 MHz)δ:7.59(1H,dd,J=8.5,2.0 Hz,H-6),7.47(1H,d,J=2.0 Hz,H-2),7.18(1H,d,J=8.5 Hz,H-5),5.05(1H,d,J=8.0 Hz,H-1′),5.28~4.50(4H,m,2″~4″& 6″-OH),3.82(3H,s,-OCH3),3.70~3.17(6H,m,H-2″~6″)。上述数据与文献[15]一致,鉴定为草夹竹桃苷。 化合物20 无色片状晶体(乙酸乙酯);mp 136~137 ℃,易溶于氯仿不溶于甲醇,紫外(254,360 nm)下无吸收,香草醛-浓硫酸显紫红色,其Rf,显色行为(香草醛-浓硫酸)均与β-谷甾醇对照品一致,故鉴定该化合物为β-谷甾醇。 化合物21 白色粉末;mp 307~309 ℃(甲醇),紫外(254,360 nm)下无吸收,香草醛-浓硫酸显紫色,其Rf,显色行为(香草醛-浓硫酸)与胡萝卜苷对照品一致,所以鉴定为胡萝卜苷。 [参考文献] [1] Rahman A,Nasim S,Baig I, et al. Anti-inflammatory isoflavonoids from rhizomes of Iris germanica [J].J Ethnopharmacol, 2003, 86(2/3):177. [2] Wollenweber E, Stevens J F, Klimo K, et al. Cancer chemopreventive in vitro activities of isoavones isolated from Iris germanica [J]. Planta Med, 2003,69(1):15. [3] Bonfils J P, Pinguet F, Culine S, et al. Cytotoxicity of iridals, triterpenoids from Iris, on human tumor cell lines A2780 and K562 [J]. Planta Med, 2001,67(1):79. [4] Choudhary M I, Naheed S, Jalil S, et al. Effects of ethanolic extract of Iris germanica on lipid prole of rats fed on a high-fat diet [J]. J Ethnopharmacol,2017,98(1/2):217. [5] Nadaroglu H,德语专业论文, Demir Y, Demir N. Antioxidant and radical scavenging properties of Iris germanica [J]. Pharm Chem J, 2017,41(8):409. [6] 周珊, 林茂, 王映红, 等. 山杨的化学成分探讨[J]. 天然产物探讨究与开发, 2002, 14(5):43. [7] 马雨涵, 林彬彬, 刘慧, 等. 鸢尾叶的化学成分[J]. 植物资源与环境学报, 2017, 20(4):88. [8] 张卫东, 陈万生, 王永红, 等. 灯盏花黄酮类化学成分的探讨[J]. 中国中药杂志, 2000, 25(9):536. [9] 沈杰, 叶蕴华, 周亚伟. 藏药甘青青兰的生物活性成分探讨[J]. 中国药学杂志, 2017, 44(3):170. [10] Huang L, Ma W H, Liu Y Z, et al. Irisdichotins A-C, three new flavonoid glycosides from the rhizomes of Iris dichotoma Pall [J]. J Asian Nat Prod Res, 2017, 13(8):744. [11] 张德武, 任燕, 戴胜军, 等. 野葛藤中的异黄酮类化合物[J]. 中国药学杂志, 2017, 34(24):3217. [12] Horie T, Sasagawa M, Torii F, et al. Studies of the selective O-alkylation and dealkylation of flavonoids. XX. A convenient method for synthesizing 5,6,7-trihydroxyisoflavones and 5,6-dihydroxy-7-methoxy-isoflavones [J]. Chem Pharm Bull, 1996, 44(3):486. [13] Liu W N, Luo J G, Kong L Y. Application of complexation high-speed counter-current chromatography in the separation of 5-hydroxyisoflavone isomers from Belamcanda chinensis (L.)DC [J]. J Chromatogr A, 2017,1218(14):1842. [14] 杨阳, 陈洁君, 王辉, 等. 膜苞鸢尾和蓝花喜盐鸢尾的化学成分探讨[J]. 中草药, 2017, 44(11):1371. [15] 李蓉, 秦民坚. 薄叶鸢尾的化学成分探讨[J]. 中国药科大学学报, 2003, 34(2):122. [16] 尉玉玲, 林彬彬, 王国凯, 等. 野鸢尾地下部分的化学成分探讨[J]. 药学与临床探讨, 2017, 19(3):238. [17] 陈云,王国凯,武璨,等.红花龙胆化学成分探讨[J]. 中国中药杂志,2017,38(3):362. [18] Arisawa M, Morita N, Kondo Y, et al. Constituents of Iris florentina. 3. Structure of irisxanthone, a new C-glycosylxanthone [J]. Chem Pharm Bull,1973,21(11):2562. [19] Yang Y B, Tan N H, Zhang F, et al. Cyclopeptides and amides from Pseudostellaria heterophylla (Caryophyllaceae)[J]. Helv Chim Acta, 2003,86(10):3376. [20] Oshimi S, Zaima K, Matsuno Y, et al. Studies on the constituents from the fruits of Phaleria macrocarpa [J]. J Nat Med, 2017,62(2):207. Chemical constituents from rhizomes of Iris germanica XIE Guo-yong, CHEN Yu-jie, WEN Rui, XU Jing-yuan, WU Sa-sa, QIN Min-jian (Department of Resources Science of Traditional Chinese Medicines, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China) [Abstract] Twenty-one compounds were isolated from the rhizomes of Iris germanica by various chromatographic techniques such as silica gel, ODS and Sephadex LH-20 chromatography. Their structures were established on basis of physical properties, MS and NMR spectroscopic data. Their structures were identified as ombuin(1), 5, 3, 3′-trihydroxy-7, 4′-dimethoxyflavanone(2), naringenin(3), cirsiliol-4′-glucoside(4), 3β, 4′-dihydroxy-7,3′-dimethoxyflavonone-5-O-β-D-glucopyranoside(5), genistein(6), irilin D(7), muningin(8), 5, 7, 4′-trihydroxy-6, 3′, 5′-trimethoxyisoflavone(9), tectorigenin(10), irigenin(11), tectoridin(12), iridin(13), mangiferin(14), irisxanthone(15), pyroglutamic acid(16), 2, 4′, 6-trihydroxy-4-methoxybenzophenone-2-O-β-D-glucoside(17), apocynin(18), androsin(19), β-sitosterol(20), and daucosterol(21). Among them, compounds 1-9, 16, 17 were obtained from this plant for the first time, compounds 8 and 9 were separated from Iris species for the first time, compounds 1, 4, and 17 were obtained from the family for the first time. [Key words] Iris; Iris germanica; chemical constituents doi:10.4268/cjcmm20170518 [责任编辑 孔晶晶] |